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Abstract

A general automatic optimization procedure coupled to a finite element induction heating process simulation has
been developed. The mathematical model and the numerical methods are presented along with results validating the
model. The first part of this paper presents the direct induction heating mathematical model, the related main numerical
choices and especially the ultra-weak coupling procedure. The general optimization problem is then presented with the
full detailed transposition of the ultra-weak coupling procedure to the adjoint problem. Numerical results provided at
the end prove the efficiency and robustness of the adjoint model in optimizing induction heating processes.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Induction heating processes have become increasingly used in these last years in industry. The main
advantages of using these processes when compared to any other heating process (gas furnace...) are,
among others, their fast heating rate, good reproducibility and low energy consumption [1]. The induction
heating process basically consists in transmitting by electromagnetic means, energy from a coil through
which an alternative current is circulating. Induced currents in the conductive part due to the well-known
Foucault law then heat the workpiece thanks to the Joule effect. Induction heating processes are mainly
used either at low frequencies (around 50 Hz), usually in order to reach a temperature distribution as
uniform as possible within the material before any forming process, or at much higher frequencies (10*-10°
Hz) in order to heat very locally near the surface, usually for heat treatments [2].

Most induction heating processes are set up using engineering experience and a trial-and-error procedure
in order to achieve the corresponding goal (grain size control, uniform prescribed temperature, hardness
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map, etc.). Induction heating process simulation, which couples electromagnetic and heat transfer equa-
tions, can be of great help for a more in depth understanding of occurring physical phenomena. So far,
various numerical models have been developed coupling electromagnetism and heat transfer. Most models
involve the well-known finite element approach [3-5] or mixed finite element and boundary element ap-
proaches [6-8]. Even though mixed methods are interesting due to their inherent ability to take into account
open domains and inductor displacements, the global finite element approach has been preferred since it
involves sparse matrices (leading to reductions in terms of CPU time and memory requirements) and is
more suited for parallel computing. Most authors use the harmonic approximation, assuming that all
electromagnetic fields are sine waves when the input current is a sine wave. This approximation, valid when
considering linear magnetic materials, can yield to large errors when dealing with highly ferromagnetic
materials [3,9]. That is the reason why the time-dependent formulation has been preferred. Time-dependent
integration being very time consuming when using a traditional weak coupling between all problems, the
ultra-weak strategy has been developed. The complete model developed in our laboratory, well described in
[10], is extended here.

The use of a direct induction heating process simulation code can be a first step in optimizing the
global process. Nevertheless, in order to save again on time computation and improve accuracy, general
numerical models have to be developed in order to automatically optimize the process with respect to
any industrial goal as long as they deal with temperature evolutions anywhere within the part to be
heated. Very few optimization models (but [11-13]) applied on coupled magneto-thermal problems can
be found in the literature. Models presented in [11,12] use the harmonic approximation and consider
that electromagnetic and heat conduction problems are uncoupled. The same approach can also be
found in the control of ultrasound surgery [14,15]. In [13], the optimization procedure is based on a
zero order method leading to a too high computational cost. To go much further in induction opti-
mization, this paper presents the optimization of induction heating processes when dealing with any
material (with nonlinear physical properties) and using a gradient-type method based on the completely
coupled formulation between both time-dependent nonlinear electromagnetic and heat transfer prob-
lems. Particular attention is given in the transposition of the ultra-weak coupling from the direct to
the adjoint problem. Another major difference between [11] and this paper resides in the fact that the
model presented here optimizes transient trajectories while [11] discusses only the final steady-state
problem.

The paper is organized as follows. In Section 2, we review the direct induction heating modeling. The
continuous equations as well as the space finite element discretization and the time integration procedure
are presented. In Section 3, we formulate the optimization problem and derive the solution. In Section 4, we
present results from non-trivial simulations. Numerical tests performed on several different objectives show
the very good applicability of the developed optimization algorithm. Section 5 is dedicated to conclusions
and extensions of the proposed approach.

2. The direct induction heating model

The mathematical model developed for induction heating normally involves three main physical phe-
nomena related to electromagnetism, heat transfer and solid mechanics [10]. As far as this paper is con-
cerned, we shall introduce only electromagnetism and heat transfer since objectives to be reached in the
optimization procedure deal only with temperature evolutions through the control of electromagnetic
process parameters. We have chosen to carry out a complete finite elements approach for both electro-
magnetic and thermal computations. For each model, proper continuous equations are written with proper
applied boundary conditions. Space and time discretizations are then explained. A validation of the direct
model is then performed.
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2.1. The electromagnetic model

The global system of equations modeling electromagnetic wave propagation is based on the four
Maxwell equations:

V- B=0, (1)
V. ¢E =0, 2)
. - OB
E=-— 3
V x 3 (3)
. O¢E
VxH= J+ gt 4)

where B is the magnetic field, H is the magnetic field, ¢ is the dielectric constant, E is the electric field, fis the
electric current density associated with free charges, V = (0/0x,0/0y,0/0z) and x denotes the vector
product. This system of equations is coupled with relations associated to material properties:

W(T ) = 5
j = alDE. (©

where u is the differential magnetic permeability, ¢ is the electrical conductivity and T is the temperature.
The electromagnetic resolution consists in calculating fields, E = E(r,7), B = B(r,t), H = H(r,t) and
J = Jj(r,t) at any location r and time ¢ that satisfy all relations (1)—(6). The standard procedure consists in
writing a single second-order wave propagation-like equation. When solving the electromagnetic problem
using the electrical field for instance, the procedure is the following. By dividing (3) by the differential
magnetic permeability (5) and taking its rotational on both sides, we first get

- 1o - - OH 0 /s -
V><<;VXE>=—VX§=—§(V><H>. (7)

Substituting (4) in (7) then gives

0 (- O¢E 1~ =
a(}—i—a >+Vx(;VxE>—O. (8)

The total current density j being the sum of the induced currents ¢ and the imposed one J;, (8) becomes,
introducing the Ohm law (6)

PE  O0E - | T oJ,
o~ to— —VXE)=-=2, 9
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With the electrical field as the unknown, the electromagnetic problem consists then in calculating
E = E(r t) satisfying (9) along with the null divergence condition (2) In the same manner, the electro-
magnetlc problem consists in, when using the magnetic field H = H (r,t) as the unknown, calculating
H = H(r,1) satisfying (10) along with its null divergence condition (1)
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In axis-symmetrical configurations, using a cylindrical coordinate system [€,, &, &.], electromagnetic fields
do not depend on the angular coordinate (0 - /00 = 0) and it is shown from (6) that when the current
density circulates in the ortho-radial direction (.75 = Js(r,z)éy), the electrical field E= Ep(r,z)éy is then
reduced to a single non-zero component in the ortho-radial direction with the null divergence condition
implicitly taken into account [16,17]. Developing (9) in the cylindrical coordinate and taking into account
of above remarks, the problem is then to find E = Ey(r,z) satisfying

O’E o = 1~ 1E 0 /[/1\E oJs
SEIPRCCRE - B (it /o) I i R 1
‘e T v (,uv >+,ur2 6r(,u)r or’ (1)

where the last term in the left-hand side of (11) is usually neglected [5] even though it is numerically shown
[17] that it affects consequently the results when dealing with magnetic materials. The input current density
being most of the time a sine wave, this writes Js = Jj sin(2nf¢), where J, is the amplitude and f is the
frequency. Next, a very standard approximation consists in neglecting the displacement currents (last term
in the right-hand side of (4)). The general domain of validity when using this so-called magneto-quasi-static
approximation can be found in any electromagnetism handbooks [18], and is given explicitly for induction
heaters in [10]. Eventually, the electromagnetic problem consists in calculating E = E,(r, t) satisfying (12)

E - (1= 1 E 1\ E
aaa—t—v- <;VE>+;r—2—§<ﬁ>;+2anosin(2nft):0. (12)
It should be noted that Eq. (12) is a diffusion-like equation instead of the wave propagation-like equation
(11). Two physical parameters, namely the electrical conductivity ¢ and the magnetic permeability u, are of
concern in (12). Both depend on temperature. For nonlinear ferromagnetic materials, the magnetic per-
meability also depends on the magnetic field strength. General formulations for linear and nonlinear
properties are presented in [19]. Since most magnetic materials present nonlinearities with respect to the
magnetic field [20], it is usually convenient to have a proper linearization transfer formulation from non-
linear to the linear formulation. This is also presented in [19,21]. It is shown in [22] (resp. [10]) how the
nonlinearity is handled when using the magnetic field (resp. electric field) as the state variable. It is well
known that all electromagnetic fields strengths decrease as the inverse of the source current distance to
reach zero at infinity. When using the standard finite element method, it is necessary to take into account a
closed domain using an artificial border. In axis-symmetrical cases, a null Dirichlet boundary condition on
the symmetry axis I is prescribed to the electrical field and, to avoid artificial reflections or external
borders I — I'j, an absorbing-type Robin-like condition is prescribed [4,12,23] (see Fig. 1).

Inductors _ /
Axis of ﬁ_ Aft:lfimal.
- surrounding
symmetey \tl
Yy L] \t| box (T
ool L mesetoeneses | ]

Fig. 1. Schematic axis-symmetrical representation of the global domain of study Q° = Q. U Qinductors U Qair and of the border I'*.
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2.2. The heat transfer model

Eddy currents derived from the electromagnetic model induce the heat dissipated within the workpiece
due to Joule effects. Temperature evolution within the workpiece is governed by the classical heat transfer
equation

T -
pC%—[ —div(kVT) = oE?, (13)

where p is the material density, C is the specific heat, k is the thermal conductivity, and ¢E? is the heat
source term due to eddy currents [2]. The specific heat and thermal conductivity are also temperature
dependent. Different kinds of boundary conditions for temperature or its normal derivative can be pre-
scribed at interfaces, listing convection and radiation between the part and the air on I'; (14) and prescribed
heat flux on I} (15) [24]. We can also consider a prescribed temperature on Iy (16):

_k§T n = l’l(T — Text) + 8emiO-Ste(T4 - T:a)’ (14)
—k%T A= (pprescribedv (15)
T = Tprescribeda (16)

where # is the outward unit normal vector, 4 is the convection coefficient, &y, is the material emissivity, og
is the Stephan constant and T, is the room temperature. Although the heat conduction equation (13) is
valid anywhere in the domain Q' = Q°, one may choose to solve it only on the workpiece to be heated
(2 = Quur) — thus enabling easy enforcement of special boundary conditions such as convection and ra-
diation for instance. Locations of boundaries Iy, I'} and I, are given as an example in Section 4.

2.3. Integral formulations and space discretization

In order to establish weak formulations of (11) and (13), we multiply them, respectively, by test functions
Y and ¢ belonging to the functional space V' and W that respect, respectively (17) and (18):

V:{weH‘(Qf),feLz(Qf)y:oOn F;,%:O}, (17)
r
1 t t aq)
W= (peH(Q),(p:OOnfz,@:O ) (18)

with H'(Q) = {y, ¢ € L*(Q),V{, Vo € L?(Q)}, and integrate them on the whole considered domains.
After using the Green theorem, one gets the following Cauchy-Dirichlet-Neumann problems from which
existence and uniqueness of solutions can be proved [25]

/Qg%[//-k/giﬁE-ﬁw—i-/Q#Ew//—i—/g%%(Elﬂ)—i—/anfJocos(Znﬁ)lﬂ:0 Ver, (19)
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(20)
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where the radiation boundary condition (14) has been linearized with respect to temperature pointing out
that eemiose(T* — T%,) = temiOse (T2 — T2,) - (T* 4 Text)(T — Toxe), Where T+ is an approximation of tem-
perature (usually temperature of the previous time step). The generalized convection coefficient 4 involved
in (20) and afterwards thus encompasses the classical convection coefficient as well as the linearized ra-
diative condition [24].

Weak formulations (19) and (20) have now to be discretized in space. Functional spaces V' and W are
classically approached by, respectively, space discretized V" and W”, tests functions y and ¢ are ap-
proached by ¢ and ¢" and unknowns E and T by E* and T". Choosing a proper basis of the discretized
space provided by the shape functions »; associated to each node i of the quadratic triangular mesh, one
gets the following linear systems, where E and T stand for the discretized versions E” and T" from now
onwards:

14 e aE e 14
wy =1 5 0} + K1E0) - (5 = o), a1
where
nb.elts
[Ce]ij = Z / oN;N; dr,
eli=1 Velt
[K*] nil‘j{ IVN VN; d +/ 1NNd+ ! a(NN)d (22)
= — i o dr —N;N; dr — - —(N;N;) dr|,
Y elt=1 elt K ’ elt ,UFZ ! elt WF or !
nb.elts
{B%, = U — 2nfJy cos(2mft) ~N,»dr],
elt=1 elt
and
11 t aT t t
R} =€) 5, (0) ¢ + [KNHT(0)} — {B'} = {0}, (23)
where
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2.4. Time discretization and coupling strategy

The space semi-discretized electromagnetic and thermal equations ((21), (22)) and ((23), (24)) must then
be integrated in time. For accuracy reasons, we have selected second-order time step finite difference
schemes detailed in [24,26] and recalled here below. Note that integration schemes are alike for both
electromagnetic and thermal computations. Hereafter, variable X represents any of the main state variables
that are the electrical field £ or temperature 7, and superscript X stand for either e or ¢ with no misun-
derstanding. As a first stage, one defines a time #* as
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£ = oy (t — 0t) + ot + oz(t + ot), (25)
with

o + o +oaz =0. (26)

The field X™* at time ¢* and its time derivative are approximated by

X* = O(]Xt—(it + 0(th + 0(3X[+5t, (27)
oX* Xt+(5t X! Xt—ét — X
=y 1) —. 2
T U (28)
System (29) is solved at time ¢* for X* with:
(T + KT )Y = 8+ allCT 00} + O ),
Y, v— 1 ym
S T T i 29
S VL TR 7 (29)
oot vl
2T ot ot
Matrices are then linearized and do only depend on their values at times ¢ and ¢ — d¢ [27]
[C]* = (al - OC3)[C]t—(5t + ((ZZ + 20(3)[C]t—5t' (30)
The corresponding field at time ¢ + J¢ is then computed
| . -
{X}’”’:a—({X} —a{X} = m{x}). (31)
3

The choice of coeflicients oy, oy, o3 and y greatly influences convergence [26]. Thus, several distinct schemes
have been tested. All numerical results presented in [17] are briefly recalled here. Comparative studies have
been performed on the test case (geometry, process and physical parameters) given by [5]. Fig. 2 presents
the electrical field evolution on one location of the workpiece surface. It is shown that these second-order
schemes which tend towards explicit schemes present high oscillations while the Dupont scheme is much
more stable. As a consequence, this latter scheme converges much easier and faster. Although the time
integration scheme choice is fundamental for the electromagnetic computation efficiency, this choice is less
restrictive for heat transfer computations [17]. Therefore, the Dupont scheme (o; = 1/4, o, =0, a3 = 3/4
and y = 1) has been chosen for both computations.

Both equations are solved in an incremental way. The weak coupling is the usual way for integrating in time
both coupled equations. The general procedure is the following. At a given timestep " =n-dt,n=1,...,N,
with N - 6t = t,, one first calculates the electromagnetic field E” = E(r, ") at a fixed known temperature field
"' = T(r,"""), then, as the second step, one calculates the temperature 7" = T'(r, ") using the pre-calcu-
lated fixed electromagnetic field £”. These two sub-systems have to be solved N times in order to cover the
whole time range [fy, #/]. The global direct problem resides thus in solving, where " are the controls:

R(E"w)=0
{R’(E”,T")O Vn=1,N. (32)

Even though weak couplings are generally interesting due to their inherent high integration accuracy, the
total number of integrations can become extremely high when considering high frequency. Indeed, the



Y. Favennec et al. | Journal of Computational Physics 187 (2003) 68-94 75

> 3 ﬁfll: N :lfl‘ I[L # il |.|'1‘j:"'. }’:‘MI
A P R .
-HE "T.t.]'“ L i% -

I DUPONT

Electrica field (V/m)
—

N T L L )
...,L% ‘IJ‘ Is' |.i" ] 1!I :i|| ‘ ; \ % J
<0 |l U | ' iil | il!

time (s)

Fig. 2. Temporal evolution of the electrical field on the workpiece surface for several time integration schemes (Crank—Nicholson,
Lees, Dupont).

characteristic time step scale for the thermal problem is of the order of magnitude of the second while the
electromagnetic one is of the order of a fraction of an electromagnetic period and thus can reach 1076-10~°
s. In principle, both equations should be integrated using the same time step. One should thus consider the
smaller of both. So, when discretizing electromagnetic periods byN steps (usually 64), one has to compute
N x f times both equations of (32) per second of heating. This such high number of integrations leads to
practical unfeasibility. A preferred ultra-weak coupling is performed.

Induction heating processes lasting several seconds in practice, temperature evolutions within a range
related to an electromagnetic period t or even several periods are very small and thus evolutions of all
physical parameters are also negligible. As a consequence, for the small considered time interval, a periodic
input current density Js(z) and thus a periodic loading vector B¢(¢) implies a periodic response E(¢). One
then chooses a thermal discretization [ty, ;] = U[¢*~!,#*],k = 1,...,K such that within each interval, evo-
lutions of all physical parameters are small. Doing so, computation of the electromagnetic problem can be
performed for each step k from time #~! to #~! + 7 with a time step being still a fraction of the period 7. The
response is then extrapolated during the rest of the intervals, namely within [#~! 4 7, #]. The heat transfer
problem is then integrated with the chosen time step |## — ##~!| with a time averaged signal over the elec-
tromagnetic period Ez(tk ) in order to compute B(¢). Formalizing, the ultra-weak coupling leads in solving
both coupled problems by (33) as schematically shown in Fig. 3. It is to be noted that the ultra-weak
coupling procedure has previously been validated in [10]

RY(E"u")=0 Vn=1,N,

RI(E*,T) = 0. (33)

Vk = 1,K{

2.5. The moving inductors case

Since the finite element discretization is used, there are mainly two ways to simulate moving inductors.
The first one is the remeshing use as it is done in forming processes simulation [28,29]. Remeshing
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Fig. 3. The general ultra-weak coupling principle. At thermal intervals k = 1,2,3 the electromagnetic field is computed with its
characteristic time step ¢ = t/64 during only one full period t. Matrices C¢, K¢ and the vector B for electromagnetic computation
are assembled using the current step temperature 7% = T(r,#*). The electromagnetic field is then extrapolated until the next ther-

mal step.

processes being very time consuming, we have preferred the following procedure where the area where
the inductor is moving through is initially defined and meshed separately (see Fig. 16). The electro-
magnetic properties of this area are moved back and forth from air properties to inductor material

properties. The inductors are moved virtually through

an almost “continuous” change of physical

—f=700 FEM-TD
—f=5000 FEM-TD
f=1000 Mixed-harmonic

—f=1000 FEM-TD
f=700 Mixed-harmonic
f=5000 Mixed-harmonic

__ 80
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Fig. 4. Comparison of our finite element time-dependent model with the harmonic mixed boundary elementfinite element model.

Both give the same evolution for the electrical field as a function of the radius.
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properties and location of electromagnetic source terms. The major advantage of using this method is
that it enables an accurate simulation of the process without any mesh distortions, and thus avoids
remeshing problems.

2.6. Conclusion

The direct modeling of induction heating processes presented upwards has been first confronted to an
analytical solution given by [5], then to the numerical code developed at the laboratory FS-LNMS in
Slovenia which is based on a mixed finite element-boundary element method [30,31]. Confrontation tests
performed on the geometry and linear magnetic parameters given by [5] are presented in Fig. 4. Next, the
comparison between the calculated electrical field evolution in the inductor surrounding a ferromagnetic
cylindrical piece and the corresponding measured current intensity [32] (see Fig. 5) shows the robustness of
the developed numerical model.
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Fig. 5. Temporal evolution: (a) evolution with respect to time of the experimental intensity in the coil; (b) evolution with respect to
time of the numerically computed electrical field in the part.
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3. The optimization problem
3.1. Formulation of the optimization problem

Direct modeling of induction heating processes enables the determination of temperature T(r,t; ut) at
any location » € 2 and at any time ¢ for a given set of process parameters u. The process parameters are
the frequency f and the amplitude J; of the input source current density Js = Jp sin(2nf?). The inductor
velocity v with respect to the workpiece to be heated can also be a process parameter. All process
parameters are stationary in time, so u = {(f,J,v) € R" x R" x R"}. We recall that induction heating
processes are mainly used either for pre-heating prior to forming operations in order to reach a tem-
perature as uniform as possible within the part, or for heat treatment applications in which case tem-
perature has to follow a precise path in space and time [1]. The optimization problem consists in finding
controls u such that calculated temperature 7(r,z;u) are as close as possible to optimal ones denoted
T°PY(r,t). The goal is then to minimize, in the mean squared sense, the discrepancy between calculated and
optimal temperature. The discrepancy J, often called cost or objective function, is defined in the general
continuous case as

. 1 rv 1
=5 [ [ @y ardy [ @ - )7 o (49
) part 'part

where both terms in the right-hand side of (34) have a different meaning. The first term used to display the
objective function time integration has been used for instance by [33] for an inverse heat conduction
problem, by [34] for minimizing the energy spent during a forming process, and also by [35] for a shape
optimization problem of a waveguide antenna. In our case, this first term will be used when heat treatment
applications are dealt with. The second term, based on the final temperature field, has been used for in-
stance by [11] in shape optimization in induction heating, and also by [35] when dealing with the control of
phase volume fractions at the end of a laser hardening process. This term is used in our case for dealing with
pre-heating applications. Temperature T(r,t;u) being calculated numerically, the continuous objective
function given in (34) has to be written in its space and time discretized form. Moreover, the objective
function may be integrated only at predefined times (¢, k = 1,...,K,0<# <t,) and on time varying space
domain of interest Q°'(#*) C Quar. Thus, the discretized objective function J(u) writes

nb.elt nb.int

K
> S (Tl t50) = T (i, 1)) Oine i (39)

k=1 elt=1 int=1
if inteQOPY (1K)
where wy,, is the weight associated to the integration point int, and &, is the binary weight associated to
time #*. The latter weight equals 0 or 1 depending on whether or not the functional J is integrated at this
time. Eventually, the optimization problem consists in finding controls u that minimize the functional J(u)
under the constraints R°(E,u) = 0 and R'(E, T) = 0, formally

Find @ such that J(u) = . (%li?fo J(u). (36)
R"(E’,I;')f_[) '

3.2. The Lagrangian method

A large number of methods can be found in literature to solve such optimization problem. One can
roughly separate them in two kinds: zero order methods and gradient-type methods. Zero order methods
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do not use any information concerning the objective function first- or higher-order derivatives and thus
usually converge to the global minimum. The Pareto optimal theory has for instance been applied to
solve a shape optimization problem of an inductor [13]. The Pareto method has proved to be efficient but
needed on the other hand an extremely large number of direct model runs [13]. Gradient-type methods,
based upon a local differentiation study of the objective function, are more interesting since they usually
converge much more quickly [36] but, on the other hand, the direct model has to be differentiated. The
objective function being calculated through the resolution of a discretized direct problem, it is highly
preferable to differentiate the discretized direct model rather than the continuous one [37,38]. The direct
differentiation of the discretized induction heating model has been performed by [12] in the case of a
steady-state electromagnetic model coupled to a transient heat transfer model and by [19] in the case of a
coupled transient model. Very good comparative studies between the direct differentiation and the use of
the adjoint theory (Lagrangian) show that, when dealing with full coupled nonlinear problems, the latter
method becomes interesting when the number of functionals for which design sensitivities are needed is
less than the number of design parameters [39-41]. Next, it is well known [42] that Lagrangian methods
are well suited when there is no explicit dependence of state variables — involved in the objective function
— and the controls. That are the main reasons why the adjoint method has been preferred. It can be
introduced through various approaches. We shall introduce it here using the Lagrangian approach. The
classical general method when dealing with a single system of equations can be found in various books
such as [43,44] and is developed here for both considered coupled systems. We define the Lagrangian of
the problem (36) as

L(qua Tv }"7 /,t) = J(u) + <RE(E7 u)7/1>£2"><[t0,t/] + <RI(E7 T)a:u>!21><[ (37)

to,tr]”

where variables 1 and u are adjoint variables and where scalar products are defined as

iy
(u,v}m[w/] = / /uv dr dr. (38)
1 Q

Domains of study Q° and Q' (resp. for the electromagnetic and the heat transfer models) being included in
the domain Q, the Lagrangian quantity can writes

L(M7Ea T, }w :u) = J(”) + <R8(E> u)7j‘>[l><[[0,tf] + <RI(E7 T)’:u>§2><[ (39)

to,t/] :

We shall now prove that a necessary condition for u to be solution of (36) is that there exists a set (E, T, 4, )
such that (u,E, T, A, i) is a saddle point of L. Indeed, the necessary condition writes

J'(u) =0. (40)
Let us show that this condition is equivalent to

3ET k) 5 () = 520 = 57 () = 5 () = 5-() =0, ()

Let first £ and T verify, respectively, (0L/04)(-) = 0 and (0L/0u)(-) =0, i.e.,
R(E,u) =0, RY(E,T)=0 Vi€t t]. (42)

Lagrangian derivation writes

oL oJ OR®
a(“7E,T717#)=a+<l’a—> . (43)
Qx[to,tr]
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Differentiation of (32) gives

OR® 0RO
ou  OE du’
R __aReE R er .

ou  OE O0u OT Ou’
So, (43) becomes

oL _oJ [, OR°QE _ [, OROE_ OROT (45)
ou ou \"OE u /gy, NTOEOu OF du/g,,

Let now adjoint variables A and u verify, respectively

<18R66E> +< 6R’6E> 0
YA AL P =Y,
OFE Ou Oxltoay] OE Ou xlio]

(Y Y
aT’éu Qxt ] $oT Ou Qxto,tr] ,

which is equivalent for adjoint variables 4 and p to verify, respectively, (OL/0E)(-) = 0 and (0L/0T)(-) = 0.
Eq. (45) thus becomes

(40)

oL, o Juor
—_— () = — _— =) . 47
) "t <aT’ ou >QX[,W] () 47

3.3. The adjoint problem

We recall here that the objective function gradient (43) is valid only when adjoint variables 4 and u are
such that scalar expressions in (46) are satisfied within the whole time range [to¢;]. The aim of the La-
grangian procedure is to get on one side of all scalar products all derivations of state variables with respect
to the controls in order to avoid computing them. To do so, here is given the method to employ. One first
expand both equations in (46) using (21)—(24)

t
(hefE) L we)  LLEEY
Ot Qu Qxto,ty] Ou Qxto,ty] OE Qu Qx|tg,tr]

T T T
(22 uel®) ) o
OT " Ou Qx[to,t1] ot Ou Qxto,tr] Ou Qx[t,tr]

where all involved operators have been detailed in Section 2.3 — except for the last term in the first equation
of (48) which is given explicitly by

[aBt] o{B'}, _ {ZZZ‘If o 20EN; dr if i=j (49)
ij

(48)

O |. OE; 0 else.

In order to separate differentiations of state variables with respect to control parameters, the time
integration is performed on (48), using the fact that operators C°¢, K¢, C' and K' are self-adjoint
(symmetric matrices) while the time derivative operator O- /0¢ is antisymmetric. System (48) thus
becomes



Y. Favennec et al. | Journal of Computational Physics 187 (2003) 68-94 81

Y o OF oK
< e <c i), & <rf>>g—<cx<to>,a<to>>g
{8,
K xlt.t7] 0E "0 2x(to,t] ’
(il T or T

+<K, _> +<6J aT> o,
au Qx|tg,t7] aT Ou Qx|tg,tr]

The adjoint problem consists then in calculating 1 = A(r,¢), p = p(r, ¢) that satisfy (51) with initial condi-
tions defined at time ¢, given in (52):

Cca,l_’_K%_‘_aBu 0
{ C16u+Ktu+aJ_0 VIG [to’tf]’ (51)
ot
C()/{(If) = 0,
(52)

aoJ
t
C'alty) + 7 (ty) = 0.

Taking into account of the objective function definition (35), the derivation of the objective function with
respect to temperature writes at node i and time #

nb.elt nb.int k opt k .
0 _ int= T(Fine, 15 1) — TP (7ing, 1°) ) 0ineV; 1 =1,
{—J(fk)} _ Zelt-l Zif[nteQ"l"‘(t")( ( t ) ( t )) t 61{ (53)
or i 0 else,
where base functions N; are previously defined in Section 2.3. Next, the loading component involved in the
first equation of (51) writes explicitly at node i

(5,2 )
— = 26EuN; dr. (54)
0F "}, eli=1 Jelt

Due to the sign change on the time operator, both equations involved in (51) have to be integrated
backward in time in order to be well posed. Defining a new time variable T = ¢, — ¢, both adjoint equations
have to be solved forward from t =0 to ¢, [33] with thermal discretization that follows 7, =t; —n - ot.
Moreover, in order for the adjoint problem to be perfectly coherent with its direct model, the ultra-weak
coupling strategy related to the direct model (33) as well as the time integration scheme (Section 2.4) are
transposed to the adjoint. Condensing linear adjoint equations as in (33), we get to solve (55). When more
features are integrated within the direct model, the transposition to the adjoint problem must follow.
Transposition for more complicated direct models are presented in [45]

Rll(TK7k7/.LK7k) =0

vk=1K {RZ(EM, TR 5 V) =0 Vn=1,N,

(55)

3.4. The objective function gradient

The objective function gradient being given in (43) and (47), one needs to calculate the scalar product
involved in (43). The calculation of the adjoint variable A is done through the adjoint problem resolution
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detailed in Section 3.3. The derivation of the electromagnetic system of equations with respect to controls
remains. When controls are continuous, exact analytical derivations are preferred whereas when controls
are not sufficiently continuous, one may rather use semi-analytical derivations. Frequency f and current
density Jy being continuous control parameters, one can derive analytically the electromagnetic residual R®
with respect to both controls. This gives explicitly, at node i and time #, using the same assembling pro-
cedure as for (22):

OR¢ OB nb.elts

{6]0 (tk)}i = { VA (tk)}i = ; /e” —2nf cos(2nft*)N; ds, (56)
aRe nb.elts

{ (tk)} = Z / (—21Jy cos(2mft*) + dn?Jyft* sin(2nft*))N; ds. (57)
of i elr=1 Jelt

As previously explained in Section 2.5, the inductors are moved virtually and incrementally through a
continuous change of physical properties and location of electromagnetic source terms. Thus, due to the
space discretization, the electromagnetic residual is no longer continuous with respect to the inductor
velocity. One way to handle this difficulty when differentiating the electromagnetic problem R¢ with respect
to the velocity v is to use semi-analytical derivations which is a compromise between analytical and local
finite difference approaches. This approach has been used in various other areas for instance by [46,47]. Let
0 be a dimensionless perturbation parameter applied on the velocity v. Then, depending on the current
value v

OR¢ B Re(EfJOs(1+?-';)7RF(E’f’JO’D) if v 7é 07 58

ov RE(Evfsfo’(”;Re(E’f’Ja70) else. ( )
Since electromagnetic equilibrium is reached whatever ¢, previous relation writes

oR | [ FELMIN e 2o, (59)

v W else.

This vector is assembled using the same assembling procedure as for the direct electromagnetic compu-
tation and also at the same times. A proper choice for the perturbation coefficient ¢ is not trivial. In
general, the lowest the perturbation coefficient, the more accurate the calculated residual gradient is.
Nevertheless, due to round-off calculations and especially due to the meshing which is obviously not
continuous in space, one has to choose a perturbation coefficient ¢ such that space area differences between
perturbed and non-perturbed locations of moving inductors share at least several integration points within
the global mesh. Eventually, if the control vector u = /(f,Jy,v) is considered, the objective function gra-
dient writes (60)

t
vuJ: </Iaai> ) </1761> ) <)°76R > I (60)
of Qx [to,tf] aJo Qx [to,tf] ov Qx [ro,tf]

with the adjoint variable A given by the adjoint problem resolution (55), and right-hand side vectors
calculated, respectively, by (56), (57) and (59). Since the adjoint variable / is calculated only on one
electromagnetic period per thermal interval, one introduces the scalar y defined as the ratio between the
thermal time step | — '] and the electromagnetic period t. The objective function gradient thus
writes
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K
OR® OR¢ OR®
Vil =7 " <)v, > <A—> <)—> . (61)
k=1 af Qx[tk=1 th=141] aJo Qx[th=1 k=1 41] ov Qx[h-1 -1 4]

3.5. The global optimization problem resolution

The determination of the objective function gradient enables to use gradient-type methods. Given an
initial set of controls #°, one builds a series defined by

uF = ok db, (62)

where d* is the direction of descent and «* is the descent step size. At each iteration k the direction of
descent d* can be computed in various ways. The simplest method consists in choosing the so-called steepest
descent [14] where

d" = —V,J. (63)

The main disadvantage of using the greatest slope algorithm comes from its low convergence as u* gets close
to the minimum [36,50,51]. In order to avoid erratic characteristics of steepest descent methods, an al-
ternative consists in developing a conjugate gradient method applied on arbitrary functions. The best-
known methods are the Fletcher and Reeves’s [52] and the Polak—Ribiére’s [53]. These methods are known
to be very interesting, on one hand because they require storage of very little information (when compared
to Newton or quasi-Newton methods [51]) and because their rate of convergence are very superior to that
of ordinary gradient methods. The descent direction is calculated as follows:

d¥ =~V 4] if k=1,

d" = —V,J + fd" else, (64)

where f* is chosen such that d* is conjugated with respect to d*~!. The used Polak—Ribiére method uses

ﬁk — ?VJ(U/C)~VJ(U}C)7VJ(“/(—])> lﬁ k= 07 (65)
(VJ (uF=1),VJ (uk=T)) else.

Conjugate gradient methods are widely used in practice [33,54]. Eventually, the determination of an op-
timal descent step size is performed through the resolution of

of = ArgMinj(u*" + ad"). (66)

The resolution of problem (66) which is nothing more than the minimization of an application from R into
R may be very time expensive since it needs, for the nonlinear model, several evaluations of J and thus
several integrations of the direct model. Optimization codes libraries as presented in [48] for instance are
widely used. The linear research algorithm which has been chosen relies on a dichotomial research coupled
to a parabolic interpolation [19,49].
At each iteration k, the optimization procedure consists in, with a set of controls u*,
1. integrating the objective function value (35) through the integration of the forward nonlinear direct
model (32); store all state variables;
2. integrating the backward linear adjoint problem (55) with initial condition (52), all matrices being re-
computed from stored state variables;
3. calculating the objective function gradient (60), the direction of descent (64);
4. solving the linear research algorithm (66) through several integrations of the nonlinear direct model.
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This global optimization procedure is run until convergence criteria are reached. For the considered
optimization problem, criteria are based on the objective function value, its evolution and its gradient

J(uk) g X1s
JW) = I W) <o, (67)
’vu"‘](uk)’ < X35

where the choice for y;,, i =1,...,3, may be adjusted depending on whether a fine or a rough (for ini-
tialization for instance) optimization procedure is performed. In a practical point of view, it is not easy to
choose y; since it is to be chosen in accordance with the considered optimization problem. Thus, con-
vergence criteria has been preferred [43] rather than on the functional value itself, this latter criterion being
rather used when dealing with inverse analysis problems [55,56].

4. Numerical optimization results

Different process controls have been tested. For the sake of clarity, we have kept the same geometry for
all cases. We present in Figs. 6 and 7 the used geometry [32] and the related mesh. The physical parameters
of the magnetic EN3 steel billet are the following [32]. The relative magnetic permeability equals 90 at 0 K,
with a temperature sensitivity of 6 (see formulation in [19]). The electrical conductivity equals 3.6 MS m™!
at 0°C, 1 MS m™" at 700°C, and 0.7 MS m! at 1200 °C. The thermal conductivity equals 45 W m~' K™
at0°C,42 Wm™' K ' at400°C,34 Wm~' K 'at700°C,27 W m~' K" at800°C and 30 W m~! K" at
1200 °C. The heat capacity equals 3.7 Mj m > K~' at 0°C, 6 Mj m > K~! at 700°C, 13.5 Mj m > K ! at
770°C, 5.2 Mj m > K~!at 800°C and 5.7 Mj m* K~ at 1200 °C. The heat transfer problem is computed
only in the part to be heated (Q' = Q,,,). Since the part is insulated as shown in Fig. 6, a null flux is

Centre Bore Hole
(3min diameter}

Sleel Billel
Kaaw:ool Insulation
Cerarmic Tube

| — Copper WMindings

1
1
1
1

50mm

S0mm

74mm

[
1
1
[
1
1
"
[
1
[
1
1
[
)
'
[
1
1
'
1
1
)
&
'

Fig. 6. Used geometry. Main characteristics are: billet height — 120 mm; number of layers for copper windings — 3; number of turns on
inner layer — 55; number of turns on middle layer — 54; number of turns on outer layer — 55; diameter of copper wire — 2 mm; length of
coil on former — 117 mm.
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prescribed on the external surface where » = 0.022 m, and a free convection and radiation condition is
prescribed on upper and lower surfaces where z = 0.15 m and z = 0.27 m. Electromagnetic parameters for
the air and copper inductors are taken from [57].

4.1. Test case 1

The first test case consists in reaching, on the surface, within the radius range (0.018 m; 0.022 m) (see
Fig. 7), an average optimal temperature of 1500°C after 10 s of heating through the control of the
frequency f and the current density Jy. Initial guessed frequency f° is 500 Hz, and initial current density in
the coil J§ is 10°A m~2. The general objective function writes

J(u) = /Q (t .)(T(wa tr;u) — T (,17))" do, (68)

where

u= {(f,JO) €N x ‘R*}; tr=10s; T°(w,t;) =1773 K;

Qopi(tr) = {w(r,2),0.018 m<r<0.02m and 0.15 m<z<0.27 m}.

Fig. 7. Mesh used for all test cases and location points A, C and E. Non-presented points B and D are, respectively, in between points
A and C, and C and E.
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Fig. 8. Backward evolution of the adjoint variable u(r,¢) on locations A, B, C, D and E (see Fig. 7).

The direct electromagnetic and thermal equations (32) are first computed. The objective function (35) is
then calculated along with calculation of the derivation of it with respect to temperature at final time (53).
Linear parabolic adjoint equations (55) are then backward integrated. Figs. 8 and 9 present the backward
evolutions of adjoint variables u and A. Fig. 10 presents evolutions of the calculated process parameters f
and J, with respect to iterations k, and Fig. 11 presents the evolution of the decreasing objective function
value J(u*) with k.

Iteration 0 is directly related to the first guessed parameters (f,J7). The objective function J(u") is
calculated, as well as its gradient V,oJ. Iterations 1-5 are still related to the first minimization loop, where

0 0.005 0.01 0.015 0.02
12 ¢
A

Reverse time (sec)

b, ~F gl ]

Fig. 9. Backward evolution of the adjoint variable A(r,¢) on locations A, B and C.
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Fig. 11. Objective function value evolution J(u*) with respect to iterations k.

than 40.

4.2. Test case 2

This second test consists in minimizing the objective function (69). Figs. 12 and 13 present evolutions of
controls u* and of the objective function value J (¢*) with respect to iterations k. Eight iterations are needed

to decrease the functional by a factor 20.

87

the line search algorithm (66) is running. Then, the gradient is calculated once again. Following iterations
are related to the second and third external loops where objective function and its gradient are calculated
followed again by the line search algorithm. It is to be seen that only 3 objective function gradient cal-
culations and 16 runs of the direct model are needed to decrease the objective function by a factor greater
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Fig. 12. Control values u* = {(f*,Jf) € R x R*} evolution with respect to iterations k.
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Fig. 13. Objective function value evolution J(u*) with respect to iterations k.

J(u) = /Q (T(@,030) = T (,1))" do + /Q (T(@,03u) = T™(,5))" do

+/ (T(w,tr;u) — T (o, tf))2 dow,
Qopt
where

u={(f,J) ER" xR}, 1, =25s; =35s8 t;=35s;
T (w,1) = 850 K;  T°(w,5) = 1030 K;  T%(w, 1;) = 1273 K;

QP = {w(r,2),0.018 m<r<0.02 m and 0.15 m<z<0.27 m}.
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4.3. Test case 3

The sample is heated during 20 s and cooled down freely for 10 s. The present aim is to find optimal
frequency and current density such that the final temperature is as uniform as possible and the closest as
possible to 800 °C. The objective function to be minimizes writes (70). Figs. 14 and 15 present evolutions of
controls u* and of the objective function value J (1) with respect to iterations k. Six iterations are needed to
decrease drastically the functional by a factor greater than 100.

I = [ (@0 - T 0.)) do (70)
where

u={(f.Do) eR" xR,0<r<n}; 61=20s; t;,=30s;
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Fig. 14. Control values u* = {(f*,Jf) € R* x R*} evolution with respect to iterations k.
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Fig. 15. Objective function value evolution J(u*) with respect to iterations k.
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T (w,t;) = 1073 K; Q' = Q.

4.4. Test case 4

This fourth test case uses the same global geometry as for all previous test cases except that the inductor
is moving along the z-axis as shown in Fig. 16. The aim here is to find u = {(f,Jo, vit) € R" x R" x R}
such that, after 10 s of heating, the surface between z = 22.5 and z = 24.7 cm (see Fig. 16) is as close as
possible to 850 K. The objective function to be minimized in given by (71). Fig. 17 presents the evolutions,
with respect to iterations, of frequency, input current and coil velocity, and Fig. 18 presents the evolution of
the objective function value. Only eight full calculations are needed for decreasing the objective function by
a factor of almost 100.

Fig. 16. Geometry used in test case 4. The inductor is initially moving at velocity vif® = 1072 m s~
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. - .
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Fig. 17. Control values u* = {(f*,J§, vit*) € R x R x R*} with respect to iterations k.
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Fig. 18. Objective function value evolution J(u*) with respect to iterations k.
J) = / (T, 1y 4) — T (o, 1,))* dov, (71)
Qopt

where

M:{(f,Jo,Uil)€m+XER+X‘.R+}; tf:15 S; T°pt(w,tf):850 K;

Q" = {w(r,z), 0.018 m<r<0.02 m and 0.225 m < z<0.247 m}

5. Conclusion

A complete optimization model coupling electromagnetism and heat transfer phenomena has been
presented. It is based on a gradient-type method related to an ultra-weak coupling between both non-
linear time-dependent problems, and thus enables dealing with magnetic materials very accurately. Nu-
merical optimization tests performed on various distinct objective functions have shown the efficiency and
the robustness of the proposed method where only several iterations are needed to find optimality
conditions.

So far, all control parameters have been taken constant in time. A direct extension of the proposed
adjoint method consists in finding time-dependent optimal control parameters. From the algorithmic point
of view, very little development is of concern since just the time integration definition domain has to be
changed in the scalar product (43) and thus in (60). Nevertheless, this should lead to an infinity of opti-
mality solutions especially when dealing with functionals defined at final time. Therefore, inequality con-
straints on process parameters will have to be added along with a supplementary term related to control
parameters evolutions added to the objective function. This method has proved its efficiency in other
domains as in the control of ultrasound heating [14].

In the same spirit, realistic thermo-electromagnetic processes simulations often need a very fine mesh on
magnetic piece surfaces. To deal with such cases, the global optimization procedure has been parallelized
through the single program multiple domains (SPMDs) method [58]. In order to save again on time
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computation, the next step may be to use the ultra-weak variational formulation (UWVF) applied on the
electromagnetic space discretization instead of the finite element approach [59,60]. Though this new method
will drastically change the direct model space discretization, derivation of the direct model being performed
on the discretized problem, the whole proposed adjoint method will remain unchanged.
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